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1 Recall
Recall that the epigraph of a function is given by epi(f) := {(x, t) ∈ Rn × R : f(x) ≤ t}. From last
lesson, we say that f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if and only if epi(f) is
closed. Also, if f : Rn → R ∪ {+∞} is convex, then ∂f(x) ̸= ∅ for all x ∈ ri dom(f).

Lemma 1. Let f : Rn → R ∪ {+∞} be convex. Then

1. there exists cl f : Rn → R ∪ {+∞} such that epi(cl f) = epi(f).

2. cl f(x) = lim inf
x′→x

f(x′) and dom(f) ⊆ dom(cl f) ⊆ dom(f) and ri dom(f) = ri dom(cl f).

3. cl f(x) = sup
{
ϕ(x) : ϕ(y) = ATy + b ≤ f(y), ∀y ∈ Rn

}
.

Proof. 1. Let cl f(x) := inf
{
t : (x, t) ∈ epi(f)

}
with the convention: inf ϕ = +∞. Then

(x, t) ∈ epi(f) =⇒

{
(xn, tn) ∈ epi(f)

(xn, tn) → (x, t)

This implies that (xn, tn + c) ∈ epi(f), ∀c ≥ 0 and hence

(x, t+ c) = lim
n→+∞

(xn, tn + c) ∈ epi(f)

follows from (x, t) ∈ epi(f), so epi(f) =: A = epi(cl f).

2. From (1), since epi(f) = epi(cl(f)) is closed, then cl(f) is l.s.c and cl(f) ≤ f(x), ∀x ∈ Rn.
Because we have epi(cl f) ⊇ epi(f), so it follows that cl f(x) ≤ lim inf

x′→x
cl f(x′) ≤ lim inf

x′→x
f(x′).

Moreover, it follows that
(x, cl f(x)) ∈ epi(cl f) = epi(f).

There exists (xn, tn) ∈ epi(f) with (xn, tn) → (x, cl f(x)) such that f(xn) ≤ tn. So, it means
that cl f(x) = lim

n→+∞
tn ≥ lim sup

n→+∞
f(xn) ≥ lim inf

x′→x
f(x′). Together with the above, we prove

the equality that cl f(x) = lim inf
x′→x

f(x′).

Now, for any x ∈ dom(f), we have f(x) < +∞ and hence

cl f(x) ≤ f(x) < +∞ =⇒ x ∈ dom(cl f).

So dom(f) ⊆ dom(cl f). Also, for all x ∈ dom(cl f), we have cl f(x) < +∞ and hence there
exists sequence (xn, f(xn)) → (x, cl f(x)), xn ∈ dom(f), so x ∈ dom(f) and this proves the
first part of subset relations.
To prove the second part, for x ∈ Int (dom(cl f)), equivalently, we have

cl f(y) < +∞, ∀y ∈ Bε(x)

where Bε(x) := {y : ∥y − x∥ ≤ ε}. Then, because dom(f) is dense in Bε(x) and dom(f) is
convex, so int (Bε(x)) ⊆ dom(f) and hence x ∈ int (dom(f)).
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3. Define g(x) = sup
{
ϕ(x) : ϕ(y) = ATy + b ≤ f(y), ∀y ∈ Rn

}
.

• For all continuous ϕ, as supremum of continuous functions, so g is l.s.c..

• For all convex ϕ, we have g is convex.

Then, for all x ∈ ri(dom(f)), we have g(x) ≤ f(x), so there exists v ∈ ∂f(x), or equivalently

f(y) ≥ f(x) + vT (y − x), ∀y ∈ Rn

= vTy +
(
f(x)− vTx

)
= ϕ(y), ∀y ∈ Rn

and f(x) = ϕ(x), so g(x) = sup
{
ϕ(x) : ϕ(y) = ATy + b ≤ f(y), ∀y ∈ Rn

}
≥ f(x), to-

gether with the above, we get f(x) = g(x) = cl f(x).
Now, we have

• cl f(x) is convex and l.s.c.
• g is convex and l.s.c.
• cl(f) = g on ri(dom(f)).

So, we have cl(f) = g on relative boundary of dom(f).
Now, to complete the proof, we need to handle the case of Rn \ dom(f).
For all x ̸∈ dom(f), then

f(y) = +∞, ∀y ∈ Bε(x) and cl f(y) = +∞

so for all t, there exists ϕ(y) = ATy + b ≤ f(y) and ϕ(x) ≥ t. Then, we can deduce that

g(x) = sup
{
ϕ(x) : ϕ(y) = ATy + b ≤ f(y), ∀y ∈ Rn

}
= +∞ = cl f(y)

2 Conjugate Function
Definition 1. Let f : Rn → R ∪+∞. We define its conjugate by

f ∗(d) := sup
x∈Rn

(
dTx− f(x)

)
= sup

{
ϕx(d) : ϕx(v) = vTx− f(x), ∀v ∈ Rn

}
Also, we define the bi-conjugate of f as follows:

(f ∗)∗ (x) := sup
d∈Rn

(
xTd− f ∗(d)

)
Proposition 2. Let f : Rn → R ∪ {+∞} be convex, then (f ∗)∗ = cl f .

Proof. By definition, we have

(f ∗)∗ = sup
d∈Rn

(
xTd− f ∗(d)

)
= sup

d∈Rn

a≥f∗(d)

(
xTd− a

)
.

Since a ≥ f ∗(d), so it is equivalent to say that

a ≥ f ∗(d) = sup
x∈Rn

(
dTx− f(x)

)
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so a ≥ dTy − f(y), ∀y ∈ Rn and hence f(y) ≥ dTy − a, ∀y ∈ Rn. On the other hand, since

sup
d∈Rn

a≥f∗(d)

(
xTd− a

)
= sup

d∈Rn

{
xTd− a : f(y) ≥ dTy − a, ∀y ∈ Rn

}
Now, we take ϕ(x) = xTd− a, then we have

sup {ϕ(x) : ϕ(y) is affine and ϕ(y) ≤ f(y), ∀y ∈ Rn} = cl f

Remarks. For f : Rn → R ∪ {+∞} which is not necessarily convex, then

(f ∗)∗ = sup {ϕ(x) : ϕ(y) is affine function and ϕ(y) ≤ f(y), ∀y}
= sup {ϕ(x) : ϕ is convex, ϕ(y) ≤ f(y), ∀y}

is called the convex envelope (the biggest convex function below f ) of f .
Remarks. We have the following remarks:

1. v 7→ ϕx(v) is affine (which is continuous and convex) =⇒ d 7→ f ∗(d) is l.s.c. and convex
=⇒ (f ∗)∗ is also l.s.c. and convex.

2. 0 ∈ dom(f ∗) if and only if f ∗(0) < +∞ ⇐⇒ sup
x∈Rn

(−f(x)) < +∞ ⇐⇒ inf
x∈Rn

f(x) > −∞.

3. Let f : Rn → R ∪ {+∞} be proper, i.e. f ̸≡ +∞. Then f ∗(d) ∈ R ∪ {+∞}.

4. x̂ ∈ ∂f ∗(0) and f is convex ⇐⇒ f ∗(d) ≥ f ∗(0) + x̂Td, ∀d ∈ Rn, it implies that x̂ is a
minimizer of f .

3 Example for Conjugate Functions
Example 1. For a constant function f(x) ≡ −a , then to compute its conjugate function, we consider

f ∗(d) = sup
x

(
dTx− f(x)

)
= sup

x

(
dTx+ a

)
=

{
a, if d = 0

+∞, if d ̸= 0

Example 2. For an affine function f(x) = ATx+ b, then

f ∗(d) = sup
x∈Rn

(
dTx− ATx− b

)
=

{
−b, if d = A

+∞, if d ̸= A

Example 3. Given that f(x) =
1

2
xTAx, then

f ∗(d) = sup
x

(
dTx− 1

2
xTAx

)
=

1

2
dTA−1d

Example 4. For a Lagrangian function L(x, λ) := f(x) + λg(x) and d(λ) := sup
x∈Rn

L(x, λ). Then

d(λ) := sup
x∈Rn

L(x, λ) = sup
x∈Rn

(λx− (−f(x))) = (−f)∗(λ).

— End of Lecture 20 —
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